Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peter G. Jones, ${ }^{\text {a* }}$ Peter Bubenitschek, ${ }^{\text {b }}$ Henning Hopf ${ }^{\text {b }}$ and Bernhard Witulski ${ }^{\text {b }}$
${ }^{\mathrm{a}}$ Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and ${ }^{\mathbf{b}}$ Institut für Organische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

Correspondence e-mail: p.jones@tu-bs.de

Key indicators

Single-crystal X-ray study
$T=178 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.038$
$w R$ factor $=0.099$
Data-to-parameter ratio $=13.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

2,3:9,10-Dibenzotricyclo[5.3.0.0 ${ }^{4,8}$]deca-2,5,9-triene-6,7-dicarbonitrile

In the title compound, $\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{~N}_{2}$, the fused ring system leads to angle strain (e.g. $s p^{3}$ angles of $c a 98^{\circ}$ or $c a 130^{\circ}$). The molecules are linked by one $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and two $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions to form layers perpendicular to [10 $\overline{1}]$.

Comment

Recently, we described the crystal structure of 9,10-dicyanodibenzoisobullvalene [(1); Jones et al., 2003]. Since the polycyclic carbon skeleton of (1) contains a vinylcyclopropane subunit, which, in principle, can undergo a ring-opening reaction, we decided to pyrolyze (1) (Witulski, 1992). We describe here the structure of the main isomerization product, (2).

The molecule of (2) is shown in Fig. 1. The strain imposed by the fused-ring system is apparent in, for example, the lengthened single bond $\mathrm{C} 1-\mathrm{C} 7$, the narrow $s p^{2}$ angles $\mathrm{C} 4-$ $\mathrm{C} 5-\mathrm{C} 6 / \mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$ and $s p^{3}$ angles $\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8 / \mathrm{C} 4-\mathrm{C} 8-$ C 7 , and the widened $s p^{3}$ angles $\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 15 / \mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 18$ (Table 1).

The molecules are linked to form ribbons parallel to the b axis by a weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond (Table 2) and then, more strikingly, crosslinked by two $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions to the centroid (cent) of the ring $\mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 11-\mathrm{C} 14$, to form layers parallel to (101); C5-H5 \cdots cent, with $\mathrm{H} \cdots$ cent $=2.55 \AA$ and $\mathrm{C}-\mathrm{H} \cdots$ cent $=153^{\circ}$ for the operator $1-x, y, \frac{1}{2}-z$, and $\mathrm{C} 16-$ $\mathrm{H} 16 \cdots$ cent, with $\mathrm{H} \cdots$ cent $=2.58 \AA$ and $\mathrm{C}-\mathrm{H} \cdots$ cent $=155^{\circ}$

Figure 1
The molecule of compound (2) in the crystal. The H atom at C 1 is eclipsed. Ellipsoids are drawn at the 30% probability level and H -atom radii are arbitrary.

Received 14 January 2003
Accepted 15 January 2003 Online 24 January 2003

Figure 2
Packing diagram of compound (2). Hydrogen bonds of the type C $\mathrm{H} \cdots \mathrm{N}$ are shown as thick dashed lines and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions as thin dashed lines. H atoms not involved in hydrogen bonds have been omitted. The view direction is perpendicular to (10 $\overline{1})$, with the rings that accept the $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions being viewed edge-on.
for the operator $\frac{3}{2}-x, \frac{3}{2}-y,-z$. The $\mathrm{C}-\mathrm{H}$ distances were normalized to $1.08 \AA$ to calculate these values. A packing diagram is shown in Fig. 2.

Experimental

A toluene solution of (1) was heated at 503 K for 24 h in a sealed ampoule, leading to two isomerization products in the ratio 9:1. These were separated by thick-layer chromatography and the major product [(2); 10\% yield] was recrystallized from chloroform/pentane (Witulski, 1992).

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{~N}_{2}$
$M_{r}=280.32$
Monoclinic, $C 2 / c$
$a=15.834$ (5) A
$b=8.196$ (3) \AA
$c=22.849$ (7) \AA
$\beta=99.11$ (3) ${ }^{\circ}$
$V=2927.8(17) \AA^{3}$
$Z=8$

Data collection

Nicolet $R 3$ diffractometer
ω scans
2674 measured reflections
2596 independent reflections
1938 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=25.1^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0374 P)^{2}\right. \\
& +2.4161 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.18 \text { e } \AA_{\text {。 }}{ }^{-3} \\
& \Delta \rho_{\min }=-0.17 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0026 \text { (4) }
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{C} 7$	$1.578(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.331(2)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$109.66(15)$	$\mathrm{C} 4-\mathrm{C} 8-\mathrm{C} 7$	$98.28(13)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$109.81(15)$	$\mathrm{C} 15-\mathrm{C} 9-\mathrm{C} 8$	$130.24(16)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 1$	$98.99(13)$	$\mathrm{C} 18-\mathrm{C} 10-\mathrm{C} 1$	$130.13(16)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.95	2.59	$3.314(3)$	134

Symmetry code: (i) $1-x, 1+y, \frac{1}{2}-z$.

H atoms were included using a riding model, with fixed $\mathrm{C}-\mathrm{H}$ bond lengths ($s p^{2} \mathrm{C}-\mathrm{H}=0.95 \AA$ and methine $\mathrm{C}-\mathrm{H}=1.00 \AA$); $U_{\text {iso }}(\mathrm{H})$ values were fixed at $1.2 U_{\text {eq }}$ of the parent atom.

Data collection: P3 (Nicolet, 1987); cell refinement: P3; data reduction: XDISK (Nicolet, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Financial support from the Fonds der Chemischen Industrie is gratefully acknowledged. We thank Mr A. Weinkauf for technical assistance.

References

Jones, P. G., Bubenitschek, P., Hopf, H. \& Witulski, B. (2003). Acta Cryst. E59, o169-o170.
Nicolet (1987). P3 and XDISK. Nicolet Instrument Corporation, Madison, Wisconsin, USA.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Witulski, B. (1992). PhD thesis, Technical University of Braunschweig, Germany.

